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Abstract—Inter prediction is an important module in video
coding for temporal redundancy removal, where similar reference
blocks are searched from previously coded frames and employed
to predict the block to be coded. Although existing video
codecs can estimate and compensate for block-level motions,
their inter prediction performance is still heavily affected by
the remaining inconsistent pixel-wise displacement caused by
irregular rotation and deformation. In this paper, we address
the problem by proposing a deep frame interpolation network
to generate additional reference frames in coding scenarios.
First, we summarize the previous adaptive convolutions used for
frame interpolation and propose a factorized kernel convolutional
network to improve the modeling capacity and simultaneously
keep its compact form. Second, to better train this network,
multi-domain hierarchical constraints are introduced to regularize
the training of our factorized kernel convolutional network.
For spatial domain, we use a gradually down-sampled and up-
sampled auto-encoder to generate the factorized kernels for frame
interpolation at different scales. For quality domain, considering
the inconsistent quality of the input frames, the factorized kernel
convolution is modulated with quality-related features to learn to
exploit more information from high quality frames. For frequency
domain, a sum of absolute transformed difference loss that
performs frequency transformation is utilized to facilitate network
optimization from the view of coding performance. With the well-
designed frame interpolation network regularized by multi-domain
hierarchical constraints, our method surpasses HEVC on average
3.8% BD-rate saving for the luma component under the random
access configuration and also obtains on average 0.83% BD-rate
saving over the upcoming VVC.

Index Terms—High efficient video coding (HEVC), inter
prediction, frame interpolation, deep learning, multi-domain
hierarchical constraints, factorized kernel convolution.

I. INTRODUCTION

W ITH the booming multimedia social networking and
consumer electronics markets, an increasing amount

of images and videos are uploaded to the community every-
day. The new trend calls for new coding techniques to further
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improve the compression efficiency. Successive video frames
are usually continuous in the temporal dimension and capture
the same scene. Therefore, existing video codecs like MPEG-4
AVC/H.264 [1] and High Efficiency Video Coding (HEVC) [2]
seek to improve the video coding performance with inter predic-
tion by removing temporal redundancy between video frames.
Specifically, in the inter prediction module, for a block which
is to be coded (to-be-coded block), the motion estimation tech-
nique is first used to search for reference blocks among the recon-
structed frames. Then, motion compensation technique predicts
the to-be-coded block from reference blocks. After that, only the
block-level motion information and the prediction residue be-
tween the predicted result and the original to-be-coded-block
need to be coded. Consequently, temporal redundancies are
largely removed and many bits can be saved.

However, there are lots of obstacles to performing the in-
ter prediction. Even for continuous frames, content changes
and complex local motions are quite common, which lead to
large residues. Thus, many bits are used to code these residues
between the prediction and the to-be-coded block. Many re-
searches are conducted to better estimate global and local mo-
tions, namely capturing inter-frame correspondences, for better
motion compensation and temporal redundancies removal. The
early works [1]–[3] perform block-level motion estimation and
compensation. In these methods, the prediction is derived di-
rectly from one individual reference block or a linear combina-
tion of the reference blocks. In real videos, besides block-level
translational motion, there exist complex local motions caused
by non-translational camera and object movements, which are
called inconsistent pixel-wise displacement, like rotation and
deformation between the matched blocks. These kinds of in-
consistent pixel-wise displacement cannot be modeled only by
block-level motion estimation and compensation. The residues
are still large and cost a lot of bits for coding.

In the upcoming Versatile Video Coding (VVC) [4], some new
techniques are proposed to capture more fine-grained motions
beyond the block-level translational motion. The affine motion
compensated prediction [5] is proposed to model block-level
affine motion such as rotation and zooming. Moreover, the
bi-directional optical flow (BDOF) tool [6]–[8] is designed for
pixel-wise refinement on the bi-directional predicted signal. Il-
lumination consistency along motion trajectory is applied in
BDOF estimation. Furthermore, the BDOF is used in [9] for
interpolating a co-located reference frame as the additional
reference for motion compensation. Although alleviating in-
consistent pixel-wise displacement to some extent, the above
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hand-crafted methods all model the inter-frame correspondences
with limited human priors such as modelling the complex mo-
tions as block-level affine motion or calculating BDOF based on
illumination consistency of local samples. Therefore, they still
cannot fully model different kinds of inconsistent pixel-wise
displacement.

Recently, with the rise and development of deep learning-
based image processing, some researchers begin to devote their
efforts to utilizing deep learning techniques to address motion-
related problems, e.g. optical flow estimation [10]–[13] and
frame interpolation [14]–[16]. Besides improving the perfor-
mances in these tasks, these works bring in new insights and
methodologies for pixel-level motion modeling, which provide
new foundations for the successive works. Meanwhile, more and
more works explore to introduce deep learning techniques to
the video coding scenario. Various modules in the video coding
structure have been touched, e.g., mode decision [17]–[19], intra
prediction [20]–[22], inter prediction [23]–[25] and loop filter-
ing [26], [27]. Owing to the powerful representation learning
and nonlinear mapping capability of deep learning, significant
improvements have been achieved by these deep learning-based
video coding methods.

We follow both trends, deep learning-based motion model-
ing and deep learning-based video coding optimization, and
offer optimized video coding techniques to better model the
pixel-wise inconsistent displacement. Specifically, we choose to
use deep learning techniques to interpolate a pixel-wise closer
frame (PC-frame) from existing reconstructed frames. Here,
“pixel-wise closer” means that the inconsistent pixel-wise dis-
placement between the interpolated frame and the frame which
is to be coded (to-be-coded-frame) is smaller than that be-
tween the reconstructed frames and the to-be-coded frame. The
PC-frame will be utilized as an additional reference frame for
the to-be-coded frame. Thereby reference blocks with smaller
pixel-wise displacement may be retrieved for the to-be-coded
blocks in inter prediction. Compared to the individual video
frame interpolation task, frame interpolation in video coding
faces more issues. 1) In the lossy compression, reconstructed
reference frames are heavily degraded so less reference infor-
mation could be used for interpolation. Moreover, the interpo-
lation of the detail will be disturbed by compression artifacts in
the prediction process. 2) Coding performance should be con-
sidered as the metric for coding-oriented frame interpolation.
However, the existing coding pipeline is very complex and not
end-to-end trainable. So introducing proper objective functions
to train the coding-oriented frame interpolation network is also
a great challenge. 3) There are various kinds of dependencies in
different domains which can be utilized for PC-frame interpola-
tion, e.g. spatial domain, frequency domain, et al. There is not
a unified framework to consider these dependencies and their
potential interactions jointly.

In our work, we tackle the above issues by building a multi-
scale quality attentive factorized kernel convolutional neural net-
work (MQ-FKCNN). The network exploits an encoder-decoder
convolutional neural network (CNN) to generate factorized ker-
nels for synthesizing the target frame from compressed frames.

Compared with a single large kernel or separable kernels, the
proposed network is both flexible and economic to model video
frame signals with factorized kernels. Meanwhile, we intro-
duce multi-domain hierarchical constraints to train the network.
1) To reduce the disturbance of compression noise, we intro-
duce a quality attentive mechanism which guides the network
to make choices in the quality domain to use more informa-
tion from high quality frames for inter prediction. 2) For the
metric to train such a network, inspired by HEVC, a sum of
absolute transformed difference (SATD) loss function that inte-
grates measurements in both spatial and frequency domains is
used. 3) To better utilize dependencies in the spatial domain and
model the joint interdependencies across different domains, our
network takes a multi-scale structure to exploit the spatial depen-
dencies and model the multi-domain dependencies in a unified
way. Benefiting from our well-designed factorized kernel CNN
and the multi-domain hierarchical constraints, the proposed net-
work can be trained not only for better interpolation quality but
also greater coding performance.

Our contributions are summarized as follows:
� We propose to utilize deep frame interpolation to generate

an additional pixel-wise closer reference frame for inter
prediction. A coding-oriented frame interpolation network
MQ-FKCNN is specially designed to flexibly synthesize
the target frame from input frames with factorized kernels.
MQ-FKCNN significantly alleviates the inconsistent pixel-
wise displacement between existing reference frames and
the to-be-coded frame.

� To better train our network, multi-domain hierarchical con-
straints are designed for the coding-oriented frame inter-
polation. The hierarchical dependencies in spatial, quality
and frequency domains are considered jointly to obtain
more abundant reference information and achieve better
interpolation results.

� To additionally deal with compression artifacts, the multi-
scale quality attentive mechanism is designed to make
the network pick up more information from high quality
frames and further exploit spatial dependencies for predic-
tion, which further improves the interpolation accuracy.

� In order to improve the modeling capacity of our network
in the video coding scenario, a multi-scale SATD loss func-
tion is implemented to guide the network optimization in
the joint spatial and frequency domain, which can better
indicate the coding cost of the prediction residue and lead
to better coding performance.

The rest of the paper is organized as follows. Section II
introduces recently proposed deep learning-based methods
which solve motion-related problems. Some recent works that
use deep learning techniques to improve video coding per-
formance are also presented. Our proposed coding-oriented
frame interpolation method will be introduced in Section III.
Implementation details about the training data preparation
and how to integrate generated PC-frames into HEVC are
shared in Section IV. Experimental results and analyses are
shown in Section V and concluding remarks are given in
Section VI.

Authorized licensed use limited to: Peking University. Downloaded on March 08,2021 at 05:38:00 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DEEP REFERENCE GENERATION WITH MULTI-DOMAIN HIERARCHICAL CONSTRAINTS FOR INTER PREDICTION 2499

II. RELATED WORKS

A. Deep Learning-Based Motion-Related Works

Recently, deep learning-based motion estimation works have
been widely proposed and show impressive results compared
with traditional methods. In [28], an end-to-end optical flow es-
timation network FlowNet is first proposed and achieves com-
parable estimation accuracy with traditional methods. A suc-
ceeding network FlowNet 2.0 is later designed to progressively
estimate the optical flow and perform on par with state-of-the-art
methods at higher frame rates. Hu et al. [12] proposed a recurrent
spatial pyramid network for effective and efficient optical flow
estimation. Recently, Sun et al. [13], [29] proposed a compact
but effective PWC-Net integrating pyramid processing, warp-
ing, and the cost volume. The proposed PWC-Net successfully
outperforms previous works on the KITTI benchmark [30].

Meanwhile, some motion-related applications like frame in-
terpolation are also greatly facilitated by deep learning tech-
niques. Niklaus et al. [15] formulated video frame interpolation
as two steps, i.e. motion estimation and pixel synthesis, and they
proposed an end-to-end deep learning framework to solve these
two tasks. Spatially adaptive kernels are estimated for synthesiz-
ing target frames. In [16], adaptive separable kernels are succes-
sively proposed to largely reduce the model parameters. Liu et al.
[31] choosed to directly synthesize the target frame from the in-
put by learning pixel displacement with the network. In [32],
flows between the target frame and two input frames are also es-
timated and utilized for warping. The warped contextual infor-
mation which is extracted from the response of ResNet-18 [33] is
additionally used for blending intermediate frames warped from
two-sided input frames. In [34], bi-directional optical flows be-
tween input frames are inferred by U-Net [35] and then linearly
combined at each time step for interpolating target frames at
arbitrary time points.

The successes of all the above deep learning-based methods
have identified the ability of deep learning techniques in han-
dling motion related problems. Thus, based on the meaningful
experiences of previous methods, we make deeper explorations
to estimate the pixel-wise displacement between compressed
video frames and generate better temporal reference samples
for inter prediction in video coding with deep neural networks.

B. Deep Learning-Based Video Coding

There have been lots of works exploiting deep learning tech-
niques to improve video coding performance by optimizing
modules in the coding structure.

CNN has brought significant performance gain to many image
restoration tasks like super-resolution [36]–[38], denoising [39]
and compression artifacts removal [40], [41]. The success of
CNN on these image restoration tasks has promoted the devel-
opment of deep learning-based loop filtering methods. In [26],
Kang et al. proposed a multi-modal/multi-scale convolutional
neural network to replace existing deblocking filter and sam-
ple adaptive offset for loop filtering, which obtains considerable
gains over HEVC. A content-aware mechanism [42] is designed
to use different CNN models for the adaptive loop filtering in

different regions. In addition to improving loop filtering per-
formance, Laude and Ostermann [43] proposed to replace the
conventional Rate Distortion Optimization (RDO) with CNN
for the intra prediction mode decision. Furthermore, coding unit
(CU) partition mode decision can also be predicted by CNN [17]
and Long and Short-Term Memory (LSTM) network [18], [19].

Considering the strong nonlinear mapping ability of deep
learning techniques, it is also very promising to predict more ref-
erence signals from existing reconstructed signals for intra and
inter prediction by deep learning. Li et al. [20] firstly adopted
fully connected network (FCN) to learn an end-to-end mapping
from neighboring reconstructed pixels to the to-be-coded bolck
in the intra coding of HEVC. Moreover, Hu et al. [21] used a
recurrent neural network to explore the correlations between re-
constructed reference pixels and predict the to-be-coded block
in a progressive manner. As for inter prediction, Wang et al. [24]
additionally used spatially neighboring pixels of both reference
blocks and current to-be-coded blocks to refine initial predicted
blocks with an FCN and a CNN. In [23] and [25], CNNs are used
for fractional interpolation in the motion compensation process,
which provide better sub-pixel level reference samples for inter
prediction. Zhao et al. [44] first tried to apply deep frame inter-
polation to video coding by directly using interpolated blocks
as the reconstructed blocks at coding tree unit (CTU) level. Fur-
thermore, Haub et al. [45] used a frame extrapolation network to
generate artificial reference frames to improve the inter predic-
tion performance under the low delay configuration. They added
the generated frame to the reference picture list by replacing one
of the existing reference frames for inter prediction. Both these
two methods directly use a frame interpolation or extrapolation
network for inter coding without any specific optimization for
the video coding scenario. So the performance of these methods
may be limited. Comparatively, in our work, we carefully ana-
lyze new issues faced by frame interpolation in the video coding
scenario and specifically design multi-domain hierarchical con-
straints to improve the robustness and generalization ability of
our method in the video coding scenario. Extensive experiments
have also shown the superior performance of our method and
demonstrated the effectiveness of the specially designed coding
oriented modules.

III. PIXEL-WISE CLOSER REFERENCE GENERATION WITH

HIERARCHICAL CONSTRAINTS IN MULTIPLE DOMAINS

In this section, we first illustrate the frame interpolation in
HEVC and analyze several issues faced in the coding scenario.
Then, we build an MQ-FKCNN for deep frame interpolation. At
last, we present several well-designed constraints to regularize
the training of our MQ-FKCNN to address the above issues for
better interpolation.

A. Frame Interpolation in HEVC

We implement and test our method on the HEVC refer-
ence software HM-16.15 under the RA configuration. For a
to-be-coded frame It, two-sided frames Il and Ir are previously
coded and used as the input of MQ-FKCNN. The PC-frame Im
will be interpolated to facilitate inter prediction. In the video
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coding scenario, only reconstructed reference frames Îl and Îr
are available for reference. Compared to frame interpolation of
high-quality videos, frame interpolation in the coding scenario
inevitably faces four issues:

1) High frequency detail loss of reference frames caused by
the quantization operation leads to difficulty in the im-
plicit motion estimation and inaccuracy of local details
inference.

2) Compression artifacts, i.e. the blockiness, in reference
frames originate from block-based quantization. The arti-
facts are easy to be brought into the generated interpolation
results.

3) Inconsistent quality of input frames. Due to the design of
coding configurations, Il and Ir may be coded with dif-
ferent QPs. A desirable frame interpolation model should
consider the quality of the input frames and utilize this
information adaptively.

4) The purpose of video coding is to maintain the quality of
decoded frames with fewer bits. Thus, training a coding
oriented frame interpolation model should pay attention
to both distortion and bit cost.

B. Overview of the Proposed Method

To tackle the above mentioned issues, we explore possi-
ble models and potential constraints to effectively infer tem-
porally intermediate frames from noisy and inconsistent input
frames. To build an effective interpolation model, we start from
raw adaptive kernel CNN and separate kernel CNN [16], ana-
lyze their correlation with a unified viewpoint, and develop the
proposed MQ-FKCNN for better interpolation. To better train
this model, the hierarchical constraints in several domains are
introduced:

1) Spatial Domain. Our feature extraction network takes an
encoder-decoder structure that first down-samples features
and then up-samples features. In this network, the kernels
and interpolation results are inferred from small to large
progressively. At a small scale, the motion information
is easier to be learnt and details can be better inferred in
this progressive way even with the high frequency detail
loss. Furthermore, at the small scale, compression artifacts
are suppressed, and more clean and accurate interpolation
results are obtained.

2) Quality Domain. To handle the inconsistent quality of in-
put frames, we make our model be aware of the qual-
ity differences. The factorized kernel is modulated with
quality-related features, which guides the model to utilize
more information of the high quality input frame.

3) Frequency Domain. To better regularize the training of
our frame interpolation network for better video coding
performance, a loss considering both distortion as well as
the bit cost is implemented by frequency transformation.

In the following sections, we will introduce our MQ-FKCNN
and the multi-domain hierarchical constraints in details.

C. Multi-Scale Quality Attentive Factorized Kernel CNN

For a to-be-coded frame It, the frame interpolation method
based on adaptive convolutions uses the two-sided reference

Fig. 1. Architecture of different adaptive kernel models for frame interpola-
tion. (a) Raw adaptive convolution and its factorized form. (b) Adaptive separable
convolution. (c) Factorized convolution. (d) Multi-scale factorized convolution.
(e) Multi-scale quality attentive factorized convolution.

frames Îl and Îr as input. The bi-directional motion feature
is first extracted and then used for inferring adaptive kernels
to reconstruct the temporally intermediate frame. The adaptive
convolutions used in previous works, the related variants and
our newly proposed one are discussed as follows.

Adaptive Convolution. Adaptive convolution works in this
way. To predict a pixel Im(x, y) in the target frame, two n× n
adaptive 2D kernels wl(x, y) and wr(x, y) will be first esti-
mated respectively for two-sided input reference frames Îl and
Îr. Im(x, y) is then interpolated via local adaptive convolution
on Îl and Îr as follows:

Im(x, y) = wl(x, y)⊗ p̂l(x, y) + wr(x, y)⊗ p̂r(x, y), (1)

where p̂l(x, y) and p̂r(x, y) are n× n patches in Îl and Îr cen-
tered at the position (x, y). For better illustration in the follow-
ing parts, we first introduce a factorized form of the adaptive
convolution as shown in Fig. 1(a). We concatenate the 2D ker-
nelswl(x, y) andwr(x, y) together to form a 3D adaptive kernel
W (x, y) for each pixel Im(x, y). We assume the size ofW (x, y)
to be c× h× w, where h and w represent heights and weights
of the adaptive kernel and are set equally to n. c belongs to the
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temporal dimension and corresponds to the number of input ref-
erence frames, which is set to 2 through the whole paper. Then,
the kernel can be respectively factorized along the temporal di-
mension as follows:

W (x, y, θ) =
λ∑

i=1

Ki
ver(x, y, θ)

′ ∗Ki
hor (x, y, θ), (2)

where θ indicates the sequence number of the input refer-
ence frame, and λ is the rank number of the adaptive kernel.
Ki

ver(x, y, θ) and Ki
hor(x, y, θ) are a pair of separable vertical

and horizontal kernels of size 1× n and the n× n adaptive ker-
nel W (x, y, θ) can be derived by summing up the multiplicative
results of λ pairs of separable kernels.

Adaptive Separable Convolution. The raw adaptive con-
volution with a large kernel size leads to a huge amount
of parameters, which makes the model training less promis-
ing. The adaptive separable convolution [16] addresses the
problem by estimating the separable form of the convo-
lutions. In fact, the adaptive separable convolution can be
viewed as the special case of the factorized form of the
adaptive convolution when λ = 1, as shown in Fig. 1(b).
For each pixel Im(x, y) in the target frame, four 1× n one-
dimensional kernels Kver(x, y, 1), Khor(x, y, 1), Kver(x, y, 2)
and Khor(x, y, 2) will be first estimated. Then, two n× n
adaptive kernels W (x, y, 1) and W (x, y, 2) are obtained by
W (x, y, 1) = Kver(x, y, 1)

′ ∗Khor(x, y, 1) and W (x, y, 2) =
Kver(x, y, 2)

′ ∗Khor(x, y, 2). Promising frame interpolation
results can be achieved by estimating the adaptive separable
kernels.

Factorized Kernel Convolution. When we relax the approx-
imate rank number λ and set λ to an intermediate value, we can
get the convolutions with different number of model parameters
and modeling capacities, as shown in Fig. 1(c) with λ = 3.

Multi-Scale Factorized Kernel Convolution. After the
quantization operation, lots of high-frequency signals in in-
put reference frames will be lost especially under high QPs.
Thus, it is difficult to predict high-frequency details in the tar-
get frame with the degraded input frames. Furthermore, the
high-frequency prediction error will additionally mislead the
training of the network. It is intuitive that high-frequency sig-
nals will take a smaller part at lower scales. In this case, pre-
diction quality of the main structures will be considered more
in the training phase. Consequently, this kind of negative ef-
fects brought by the coding artifacts can be alleviated by the
down-scaling operation. By constraining the interpolation pro-
cess at small scales, the main structures of the target frame are
better learned and the frame interpolation quality can be further
improved.

In conjunction with multi-scale frame interpolation, we
project the factorized kernels to different scales and build a
multi-scale factorized kernel convolution as shown in Fig. 1(d)
as follows:

W (x, y, θ) =
∑

{s=1, 12 ,
1
4}

Ks
ver(x, y, θ)

′ ∗Ks
hor (x, y, θ), (3)

where s represents the scale of the factorized kernel. Here, the
representation of the adaptive kernel W (x, y) is not realized
by kernel-wise summation and is equivalently injected into the
frame generation process. That is, the separate kernels are di-
rectly used to interpolate the target frame successively at dif-
ferent scales and are combined by the fusion of the synthesized
frames of different scales.

Specifically, for each scale, the target pixel is synthesized by:

Ism(x, y) =
c∑

θ=1

Ks
ver(x, y, θ)

′ ∗Ks
hor (x, y, θ)

⊗ P̂ s (x, y, θ) + Ĩs/2m (x, y), (4)

where Ism is the target frame and s represents the corresponding
scale of 1/4, 1/2 or 1. P̂ s(x, y, θ) is the reference patch centered
at the position (x, y) and will be down-sampled with bilinear
interpolation for scales 1/4 and 1/2. Ĩs/2m (x, y) is obtained by
doubly up-sampling the previously interpolated frame Is/2m with
bilinear interpolation and it will be set to 0 for s = 1/4.

Multi-Scale Quality Attentive Factorized Kernel Convo-
lution. As mentioned above, under the RA configuration, two-
sided reference frames will be of different quality since they are
coded with different QPs. It is meaningful to pay more attention
to the reference frame of higher quality. Consequently, the qual-
ity attentive mechanism is introduced to the factorized kernel
convolution and a new quality attentive kernel Qs(x, y) of size
c× 1× 1 is added. The quality attentive modulation as shown
in Fig. 1(e) is formulated as follows,

W (x, y, θ)=
∑

{s=1, 12 ,
1
4}

Qs (x, y, θ) ∗Ks
ver (x, y, θ)

′

∗Ks
hor (x, y, θ) . (5)

From the view of frame interpolation, an illustration of the
target frame synthesis that uses quality attentive factorized ker-
nel convolution is shown as the QA-FKC component in Fig. 2.
We generate normalized quantization parameter (QP) maps ÎQl
and ÎQr of the two-sided reference frames as the additional in-
put to make our network more aware of the quality differences
between reference frames. Two-sided quality attentive kernels
and factorized kernels are estimated for synthesizing the target
frame.

The target pixel Ism(x, y) is obtained by:

Ism(x, y) =

c∑
θ=1

Qs (x, y, θ) ∗ (Ks
ver(x, y, θ)

′ ∗Ks
hor (x, y, θ))

⊗ P̂ s (x, y, θ) + Ĩs/2m (x, y). (6)

D. Architecture of MQ-FKCNN

The architecture of MQ-FKCNN is shown in Fig. 2. The
whole pipeline is illustrated in details as follows.

Bi-Directional Motion Feature Extraction. An encoder-
decoder structure is employed to extract bidirectional motion
feature. The progressive down-sampling and up-sampling op-
erations effectively enlarge the receptive fields so large scale
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Fig. 2. Architecture of MQ-FKCNN. Numbers below the feature maps indicate channel numbers. 1/2 and 1/4 mean scales of the images. The feature extraction
part predicts bi-directional motion information between input frames. In the multi-scale frame interpolation component, intermediate frames of different scales
are interpolated by QA-FKC. QA-FKC denotes quality attentive factorized kernel convolution. Inputs of this block are all marked in blue and the outputted Im is
marked in red. The convolution is modulated with quality-related features to be aware of using more information from high quality frames. SATD loss measures
the difference in both spatial and frequency domains. The whole network is regularized by the constraints in the spatial, frequency and quality domains.

motion can also be caught by MQ-FKCNN. Kernel sizes of all
convolutional layers are set to 3× 3 and the rectified linear unit
(ReLU) is utilized as the activation function. At the encoder side,
average pooling is used for down-sampling. Following [16], bi-
linear interpolation is used for up-sampling at the decoder side
since checkerboard artifacts can occur if other up-sampling lay-
ers like transposed convolution is selected [46]. Skip connections
are used here to bypass low-level information from the encoder
side to the decoder side.

Multi-Scale Frame Interpolation. With the extracted bi-
directional motion feature, the multi-scale frame interpolation
part generates target intermediate frames of different scales from
small to large at the decoder side. At each scale s, the target in-
termediate frame is interpolated by quality attentive factorized
kernel convolution.

Quality Attentive Factorized Kernel Convolution. De-
tails of factorized kernels estimation have been described in
Section III-C. At each scale s, two-sided factorized kernels
Ks

v,l, K
s
h,l K

s
v,r, Ks

h,r and quality attentive maps Qs
l , Qs

r are
estimated for interpolation. Feature maps of corresponding
scales extracted in the feature extraction part are used as input.
For a target frame of size H ×W , each of four factorized
kernel maps of size H ×W × n will be inferred by four layers
of convolutions. For scales of 1/4, 1/2 and 1, n is respectively
set to 13, 25 and 51. Thereby, each pixel in the target frame
Ism can find four corresponding 1× n factorized kernels at the
same position of four factorized kernel maps.

TABLE I
SUMMARIZATION OF MODULES AND THE CORRESPONDING CONSTRAINTS

As for the quality attentive maps estimation, normalized QP
maps of reference frames are generated and used as the input
together with the extracted bi-directional motion feature. The
normalized QP maps are derived by dividing QPs of reference
frames with the value 51. Then, an H ×W × 2 quality attentive
map is estimated by four layers of convolutions. The interpolated
result Ism is obtained by quality attentive factorized kernel con-
volution on the reference frames as illustrated in Eq. (6).

After multi-scale frame interpolation, the multi-scale SATD
loss function is used to measure the prediction error and guide
optimization of network parameters, which is illustrated in
Section III-E. The corresponding components in our network
which implement the multi-domain hierarchical constraints are
summarized in Table I.
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Fig. 3. Two example residue blocks with same �1 losses but different �S losses.
Intuitively, SATD loss is superior in measuring the redundancy of the residual
signal after transform.

E. Multi-Scale SATD Loss Function

In the training process, parameters of the network are opti-
mized by back-propagating the gradient of the loss calculated
between the interpolated frame Im and ground truth It. In deep
video frame interpolation methods, the �1 loss function is com-
monly adopted [16], [31], [32], [34] to train the model for the
order of better objective performance:

�1 (Im, It) = ‖Im − It‖1. (7)

However, �1 loss function cannot fully measure the modeling
capacity from the view of video coding performance. It regards
each pixel as an independent one and thus cannot measure the
bits needed for coding the prediction residue, which is the other
important factor that affects the final coding performance.

In the fractional motion estimation process of HEVC, SATD is
adopted as a matching criterion for it can better indicate the rate
distortion costs, which is also reported in previous works [47],
[48]. By computing the SATD of a residue block with Hadamard
transformation, parts of the spatial correlations are considered,
which is more consistent with the step of transform coding. Thus,
SATD can better reflect the rate distortion costs of the residual
signals. Two example residue blocks and the corresponding 4
× 4 Hadamard transformed blocks are shown in Fig. 3. Though
their �1 losses are the same, the residue block (a) will intuitively
cost less in the successive coding process since there are higher
spatial similarities among the residual signals in the block. Com-
pared with �1, SATD successfully reflects the difference of the
coding cost.

Consequently, we adopt SATD as the loss function �S to apply
constraints to MQ-FKCNN in the frequency domain for better
coding performance. In conjunction with the hierarchical pre-
diction architecture, multi-scale SATD loss function is further

calculated to constrain the prediction process from coarse to fine
in the frequency domain.

We calculate the �S loss by 8× 8 blocks. The 8× 8Hadamard
transformation matrix H is defined as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 1, 1, 1, 1, 1, 1, 1.

1, −1, 1, −1, 1, −1, 1, −1.

1, 1, −1, −1, 1, 1, −1, −1.

1, −1, −1, 1, 1, −1, −1, 1.

1, 1, 1, 1, −1, −1, −1, −1.

1, −1, 1, −1, −1, 1, −1, 1.

1, 1, −1, −1, −1, −1, 1, 1.

1, −1, −1, 1, −1, 1, 1, −1.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
By dividing the residue It − Im into T non-overlapping 8× 8
residue blocks, we transform each residue block Bj by:

B̃j = H×Bj ×H, (9)

where B̃j is the transformed residue block. Then, �S(Im, It) can
be obtained by sum of the absolute values of all the transformed
residual signals:

�S (Im, It) =

T∑
j=1

8∑
x=1

8∑
y=1

∣∣∣B̃j(x, y)
∣∣∣. (10)

The final multi-scale loss L is calculated by:

L = α�S(I
1/4
m , I

1/4
t ) + β�S(I

1/2
m , I

1/2
t ) + γ�S(Im, It), (11)

where α, β, γ are the weighting parameters. The down-scaled
images I

1/4
t and I

1/2
t are derived from It with Bilinear

interpolation.

IV. TRAINING AND INTEGRATION DETAILS OF MQ-FKCNN

A. Training Data Preparation

We use the Vimeo-90 K dataset [49] to generate training data.
The dataset consists of 89,800 video clips with a fixed resolu-
tion of 448× 256 resized from high-quality video frames. Video
clips with three frames are sampled from the dataset to form
training samples. We annotate three consecutive frames in each
clip as Il, It and Ir, where Il and Ir are the two-sided ref-
erence frames and It is the ground truth. In the video coding
scenario, two-sided reference frames are reconstructed frames
which suffer from coding artifacts. The frame quality may be
low especially for high QPs. In order to make the network work
well in this condition, we code the reference frames Il and Ir
and use the reconstructed frames Îl and Îr as the input in training
data generation. The reference frames are coded with HM-16.15
under the all intra configuration with a random QP value ranging
from 0 to 51.

Besides, frames are coded under different QPs in RA config-
uration, which means two-sided reference frames usually have
different quality. For the sake of further simulating the real ap-
plication situation, we set QPs of two-sided reference frames to
have a random difference of 0 to 10. QPs of the reference frames
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Fig. 4. Illustration of the hierarchical B coding structure in HM-16.15.

are also saved in the training set as the side information for train-
ing. With the quality attentive mechanism, our MQ-FKCNN
can be more aware of the quality difference between reference
frames and learn to interpolate higher quality frames.

Later on, we randomly extract blocks with a size of 150× 150
pixels at the same positions from two-sided coded reference
frames and the ground truth frame to form training samples. Fur-
thermore, a deep learning-based optical flow estimation method
SpyNet [11] is utilized here for candidate samples selection. We
will not add samples in which the mean flow magnitudes be-
tween two-sided blocks are greater than 15 pixels to the training
set.

We divide the dataset into two subsets to respectively form
the training and validation dataset. After the selection, in total
234,192 samples will be generated from the dataset for training.

B. Training Procedure

In the training procedure, we refer to [16] for training data
augmentation. Specifically, 128× 128 patches are randomly
cropped from the 150× 150 blocks in the training dataset for
training. The cropped patches are further augmented by ran-
domly changing the order of two-sided reference blocks. More-
over, we also randomly flip all the input blocks horizontally or
vertically for augmentation.

The network is implemented in PyTorch and AdaMax [50] is
used as the optimizer with β1 = 0.9, β2 = 0.999. The batch size
is set to 16. Weighting parametersα, β, γ in Eq. (11) of the multi-
scale SATD loss function are respectively set to 0.2,0.3,0.5. The
learning rate is initially set to 0.001 and changed to 0.0001 after
30 epochs. We end the training procedure when 70 epochs reach.

C. Integration into HEVC

We implement and test our method on HM-16.15 under the
RA configuration, where frames are coded in the hierarchical
B coding structure. Frames are allocated to different group of
pictures (GOP) and frames of different GOPs are coded suc-
cessively. In HM-16.15, each GOP consists of 16 frames. The
coding order of frames in the same GOP is not decided by their
picture order count (POC) value but systematically redesigned.
As shown in Fig. 4, frames are assigned to different temporal
layers. The frames are coded successively according to their
temporal layers. Frames in higher layers can utilize the recon-
structed frames in lower layers for inter prediction. Moreover,

in addition to frames of the same GOP, coded frames in previous
GOPs can also be adopted as the reference.

We choose to generate the PC-frame for frames whose tem-
poral layers are greater than 1 in this paper. Specifically, for a
to-be-coded frame It, we denote its temporal layer as τ(It) and
the PC-frame can be generated as follows:

Im =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f
(
Ît−4, Ît+4

)
, τ (It) = 2,

f
(
Ît−2, Ît+2

)
, τ (It) = 3,

f
(
Ît−1, Ît+1

)
, τ (It) = 4,

(12)

where Im is the desired PC-frame and Ît+∗ means the recon-
structed reference frame. f(·) represents MQ-FKCNN which
infers the PC-frame from two-sided coded reference frames.

In the coding process, two reference picture lists List0 and
List1 will be maintained. For most frames, two forward frames
inList0 and two backward frames inList1 are available as refer-
ence for inter prediction. For each reference frame, the reference
frame index will be allocated to it which indicates its place in
the reference picture list. Prediction units (PU) at the decoder
side can find corresponding reference frames through decoded
reference frame indexes. To add the interpolated PC-frame to
reference picture lists, we choose an existing reference frame Îf
in reference lists which is farthest from the to-be-coded frame
It and use its reference index to access Im at the decoder side.
Îf and Im share the reference index of Îf in inter prediction.

Specifically, we implement a CU level RDO to decide which
reference frame to be accessed by the shared reference index.
Two passes of encoding that respectively use Îf and Im for inter
prediction are performed at the decoder side. A flag is set based
on the rate-distortion costs of the two passes to indicate which
reference frame to be used. When the flag is set to true, Im will
be accessed if the shared reference index is chosen. Otherwise
Îf will be used. The flag is coded with one bit and integrated at
CU level. All PUs in a CU share the same flag. Moreover, if all
PUs in a CU do not choose the shared reference index after two
passes of encoding, we will not code the flag since it is no need
to indicate which frame the shared reference index points to if
it is never visited.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

The over all performance is tested in HM-16.15 under the
common test conditions [51]. BD-rate is used to measure the
coding performance. Apart from normal QPs {22, 27, 32, 37},
we additionally test the overall performance of our method under
larger QPs {27, 32, 37, 42}. It should be noted that we only need
to train one model for all QPs. Luma and chroma components
share the same interpolation model. During testing, the chroma
components will be first up-sampled and concatenated with the
luma component to form a three-channel YUV image. The YUV
image is then transformed to an RGB image to form the input.
We also compare with a method proposed in [44], which sim-
ilarly introduces deep frame interpolation to video coding but
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TABLE II
BD-RATE REDUCTION OF THE PROPOSED METHOD COMPARED TO HEVC

directly use the interpolated block as the reconstruction block.
For simplicity, we call it DVRF.

B. Experimental Results and Analysis

1) Overall Performance: Table II shows the overall perfor-
mance of our method for classes A, B, C, D and F. Our method
has obtained on average 3.8%, 5.3% and 4.6% BD-rate savings
respectively for the Y, U, V components under the normal QPs
and 4.3%, 6.8% and 5.8% BD-rate savings under larger QPs. For
the test sequence PeopleOnStreet, up to 10.9% BD-rate saving
can be obtained for the luma component under larger QPs. For
further verification, some example rate-distortion (R-D) curves
are shown in Fig. 5.

It should be noted that, sequences in class F are screen con-
tent sequences, where most of the displacement is simple shift
motion. Consequently, our method cannot bring much BD-rate
decrease for sequences in class F and even lead to BD-rate in-
crease for the sequence SlideEditing, which significantly affect
the overall coding performance. On the other hand, our method
successfully obtain significant gain over other sequences with
complex motions, which effectively identify the performance of
our method.

The computational complexity of the proposed method is pro-
vided in Table III. A GTX 1080TI GPU is used for network
forwarding. Under the normal QPs, the overall encoding time
complexity is 231% and decoding time complexity is 16346%.
In our current implementation, we did not make any effort in

TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD

reducing computational complexity. We could further make en-
deavors in improving the computational efficiency. First, the
encoding complexity could be greatly reduced by removing the
RDO process realized by CU-level two-pass coding. Second, we
could apply some deep model quantization [52] techniques to
simplify our network so as to reduce both encoding and decoding
time complexity. Furthermore, our model can be implemented
on chips with specially designed hardware acceleration tech-
niques e.g. Single Instruction Multiple Data (SIMD), for lower
time complexity in real applications.

Besides, the JVET ultra high definition (UHD) test sequences
of size 3840× 2160 [53] are also tested. Results are shown in
Table IV. It should be noted that in the following experiments,
all the sequences are tested under QPs {27, 32, 37, 42} and the
number of encoded frames is set to be twice of the frame rate.
Our method can still obtain considerable BD-rate reduction for
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Fig. 5. Four example R-D curves of the sequences PeopleOnStreet, BQMall, BasketballPass and BQSquare for the luma component under RA configuration.

TABLE IV
BD-RATE REDUCTION OF THE PROPOSED METHOD ON UHD SEQUENCES

the UHD sequences where on average 3.17% and up to 6.77%
BD-rate savings on the luma component can be observed.

2) Comparison With the Existing Method: We compare our
MQ-FKCNN with DVRF [44], which introduces a deep frame
interpolation method to video coding. DVRF is implemented on
HM-16.6. For a fair comparison, we also implement our method
on HM-16.6 and test our method under the same conditions as

DVRF. In the RA configuration of HM-16.6, the GOP size is 8
and the frames are divided into four temporal layers. Following
DVRF, we also only deal with frames of layer 2 and layer 3 and
directly replace the temporally farthest reference frame without
CU level RDO. It should be noted that only results of sequences
in classes B, C and D are posted by [44]. So we also test the
same sequences for comparison.

As shown in Table V, though DVRF obtains gain over HEVC,
they use a pre-trained model without any consideration on the
video coding scenario, whose performance is limited. More-
over, directly utilizing generated blocks as the reconstructed
blocks cannot fully exploit the benefits of frame interpolation
and will bring prediction errors to the following coding process.
Differently, by specially designing our model in the video cod-
ing scenario and integrating the generated PC-frame into inter
prediction, our method obtains on average 2.5% more BD-rate
saving for the luma component compared with DVRF.

3) Comparison With VVC: Furthermore, we integrate our
method into VVC Test Model (VTM-3.0) without the CU level
RDO. The BD-rate reduction brought by our method over VVC
is shown in Table VI. Although a bunch of techniques such as
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TABLE V
BD-RATE REDUCTION COMPARISON BETWEEN DVRF AND MQ-FKCNN

TABLE VI
BD-RATE REDUCTION OF THE PROPOSED METHOD COMPARED TO VVC

affine motion compensated prediction and BDOF have been pro-
posed for improving inter prediction performance. Our method
can still obtain BD-rate reduction over VVC. Under larger QPs,
on average −1.48% BD-rate reduction can be obtained for the
luma component.

4) Verification of Multi-Domain Hierarchical Constraints:
The effectiveness of multi-domain hierarchical constraints is
also verified. A network named FKCNN is first implemented
without the quality attentive mechanism and multi-scale frame
interpolation. Q-FKCNN is later trained by adding the qual-
ity attentive mechanism to FKCNN to verify the quality at-
tentive mechanism. Both FKCNN and Q-FKCNN are trained
with the same settings as MQ-FKCNN. The effectiveness of the
hierarchical constraints can be proven by comparing between
Q-FKCNN and MQ-FKCNN.

The comparison results of different networks on all the se-
quences are shown in Table VII. It can be seen that a consid-
erable BD-rate reduction can be obtained by adding the qual-
ity attentive mechanism to FKCNN. We additionally visualize
the fusion weighting maps of the two-sided synthesized results
for further verification of our quality attentive mechanism. The
weighting maps are generated by dividing the synthesized re-
sults from left and right reference frames with the interpolated
frame, which indicate the proportion each reference frame takes
in the final result. The visualization results are shown in Fig. 6.
As we can see, reference frames of higher quality usually take

TABLE VII
BD-RATE REDUCTION COMPARISON FOR THE VERIFICATION OF

MULTI-DOMAIN HIERARCHICAL CONSTRAINTS

a larger proportion in the final results. Moreover, the greater the
quality difference is, the more proportion the higher quality one
will obtain.

By comparing between Q-FKCNN and MQ-FKCNN, we can
find that on average 0.4% BD-rate reduction can be obtained
by employing the hierarchical constraints, which brings more
multi-domain dependencies for reference and leads to more ac-
curate prediction results.

5) Verification of SATD Loss Function: The superiority of
�S loss function is also proven by experiments. We additionally
use �1 and �2 loss functions to train the network under the same
training configuration. Models trained with �1, �2 and �S losses
are respectively denoted as MQ-FKCNN-�1, MQ-FKCNN-�2
and MQ-FKCNN-�S . Table VIII shows the BD-rate reduction
obtained by models trained with different loss functions. By
additionally constraining the interpolation in frequency domain,
we can obtain on average 1.0% and 0.4% more BD-rate reduction
for the luma component on all the sequences compared with
models trained with �2 and �1 loss functions.

For the chroma components, BD-rate increase is unfortu-
nately observed. Our explanation is that: 1) The smooth chroma
signals are originally easier to be coded after transformation.
Thus, it may bring more BD-rate savings for the chroma com-
ponents if we pay more attention to their prediction accuracy. 2)
However, since the luma component plays a much greater role
in video compression, we believe that the BD-rate increase in
chroma components could be ignored considering the BD-rate
savings on the luma component brought by the SATD loss
function.

6) Rate Distortion Optimization and CU Partition Results
Analysis: For further verification of the proposed method, we
analyze the RDO and CU partition results corresponding to the
coding results shown in Table II. It is worth nothing that only
frames whose temporal layers are greater than 1 are covered in
our analysis. We first calculate the ratio of the CUs that choose
PC-frames for inter prediction. RDO results of all the classes
are shown in Table IX. It can be seen that PC-frames generated
by our MQ-FKCNN are adopted by a considerable number of
CUs for inter prediction.

Intuitively, more larger CUs will be used if we successfully
alleviate the inconsistent pixel-wise displacement, since it is
no need to further divide the CUs to handle the local differ-
ences caused by pixel-wise displacement. So we further analyze
changes of the CU partition results before and after using the
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Fig. 6. Visualization examples of the weighting maps which indicate the proportion different reference frames take in the target frame interpolation. Brighter
pixels mean higher weightings.

TABLE VIII
BD-RATE REDUCTION COMPARISON BETWEEN MODELS TRAINED WITH DIFFERENT LOSS FUNCTIONS

Fig. 7. Changes of the CU partition before and after using generated PC-frames for inter prediction. In each set, the left one shows ratios of different types of
pixels coded by HM and the right one shows ratios of the pixels coded by our proposed method.

TABLE IX
RATIOS OF CUS THAT CHOOSE PC-FRAMES FOR INTER PREDICTION UNDER

DIFFERENT QPS

generated PC-frames. We divide pixels into four types accord-
ing to sizes of the CUs they belong to. Later, ratios of different
types of pixels are calculated and shown in Fig. 7. It can be found
that more larger CUs have been used for inter prediction after
adding PC-frames to the reference lists.

7) Results Under LD Configuration: Furthermore, to test the
generality of the proposed method, we also test our method under
the low delay (LDB) configuration. We additionally train MQ-
FKCNN for the LDB configuration on newly prepared training
data. Video clips containing three consecutive frames are used to
form the training samples. In each clip, the first two frames are
used to form the input and the third frame is used as the target.
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TABLE X
BD-RATE REDUCTION UNDER THE LDB CONFIGURATION

Testing results on all the sequences are shown in Table X. On
average 2.4% BD-rate reduction can be obtained for the luma
component under the LDB configuration.

VI. CONCLUSION

In this paper, we propose a deep learning based frame inter-
polation method to improve the inter prediction performance of
HEVC. We carefully analyze the difficulties of frame interpo-
lation encountered in the video coding scenario and pertinently
propose the MQ-FKCNN based frame interpolation regularized
by multi-domain hierarchical constraints. The multi-scale qual-
ity attentive factorized kernel convolution is implemented to
interpolate the target frame from small to large with quality
attention. For the training of MQ-FKCNN, multi-scale SATD
loss function is employed to guide the network optimization
in both spatial and frequency domains, which further improves
the coding performance. After adding the generated PC-frames
under the hierarchical B coding structure, significant BD-rate
reduction can be obtained. Extensive experiments identify the
effectiveness of each component in our MQ-FKCNN and
demonstrate the superiority of MQ-FKCNN to the previous
method.
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